If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+63x=180
We move all terms to the left:
x^2+63x-(180)=0
a = 1; b = 63; c = -180;
Δ = b2-4ac
Δ = 632-4·1·(-180)
Δ = 4689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4689}=\sqrt{9*521}=\sqrt{9}*\sqrt{521}=3\sqrt{521}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-3\sqrt{521}}{2*1}=\frac{-63-3\sqrt{521}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+3\sqrt{521}}{2*1}=\frac{-63+3\sqrt{521}}{2} $
| 3(1,5+7)=15x | | -3250=-16x^2+4013x | | -3250=-16x^2+4013 | | 8x=19+4x | | -3250=-16x^2 | | 6.7^(x-2)=42 | | 2+4x=16-3x | | 2x+4=4x-9 | | 6(x-5)-5x=25 | | 5x–21=13+3x | | 6x(x+5)-5x=25 | | 15x-30=20-10x | | 6x-2/5=3x+2/4 | | 12x-13x+4-8x=9-4x+6x-2-5x= | | X+5x+(5x+4)=70 | | -4=-4+2x | | 2x−9=3 | | -41=-y/3 | | -41=y/3 | | -u/5=-28 | | 360=2a×5 | | 3/(2x-1)=7/8 | | -26=v/8 | | 9x-7x+13=-18 | | 39=y/5+14 | | 2/x+14=26 | | 28=v/5-8 | | 14x+7x-9=8x | | 2(-4y+4)=8 | | -4n+-5=-3n+4 | | 6(x+1)=-2(x+9) | | 6x-(2x+4)=3x+5+x |